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Abstract. In the framework of the non-relativistic quark model, an exhaustive study of radiative transitions
in mesons is performed. Emphasis is placed on several points. Some traditional approximations (long-
wavelength limit, non-relativistic phase space, dipole approximation for E1 transitions, Gaussian wave
functions) are analyzed and their effects commented. A complete treatment using three different types of
realistic quark-antiquark potential is made. The overall agreement with experimental data is quite good,
but some improvements are suggested.

PACS. 14.40.-n Mesons – 13.40.Hq Electromagnetic decays – 12.39.Jh Nonrelativistic quark model

1 Introduction

Quantum Chromodynamics (QCD) is today the only re-
liable theory for describing strong interactions. There ex-
ist many systems that can be used as a laboratory for
exploring and testing the properties of this basic theory.
Among them, the meson and baryon sectors have been
subjected to a lot of investigation, essentially because they
are very easily produced. However they belong to the non-
perturbative application of QCD and thus are not easily
described starting from first principles. Despite many im-
provements in recent years, on both theoretical and com-
putational sides, the lattice gauge calculations are still
not completely reliable and cannot explain the full set
of known properties, even for the simplest systems such
as the mesons, which consist of a valence quark-antiquark
pair.

This explains why so many phenomenological ap-
proaches have been developed in order to describe the
non-perturbative part of QCD. Among them the non-
relativistic quark model (NRQM) has met with an im-
pressive number of successes [1]. The puzzling question
is that it still works even in situations where it is ex-
pected to fail; there exist certainly some deep reasons for
such a behaviour although they have not yet been clari-
fied precisely (see [2]). Basically the NRQM needs to solve
a Schrödinger type equation with two-body quark-quark
(or quark-antiquark) interactions. In recent years, the de-
termination of the interaction between constituent quarks
has reached a high degree of sophistication and the whole
spectra of mesons, for instance, can be accounted for in a
rather satisfactory way [3,4].
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The description of the spectra is a necessary but not
a sufficient condition for aiming at a good explanation of
non-perturbative QCD. In particular, very different po-
tentials can give rise to spectra of the same quality. One
needs other observables in order to test more precisely
the resulting wave functions. A possibility is the study
of static properties, such as magnetic moments or mean
square radii of charge distributions. More sensitive ob-
servables concern the transitions between various states or
production mechanisms (which depend essentially on the
same dynamical operators). One can think, for instance, of
meson decays under strong forces (a resonance giving two
or several mesons) or the decays under electroweak forces
(a resonance producing a photon or leptons in the final
channel). The advantage of this last kind of transition is
that the transition operator is known perfectly well and
thus it is easier to disentangle the effects coming from less
well-known strong interactions through the meson wave
function ([5]).

In fact this statement is not completely true in the
NRQM. Being a phenomenological theory, NRQM deals
with effective degrees of freedom, the constituent quarks,
and a pure Dirac form of the quark-photon vertex in the
transition operator is questionable. Moreover, even in the
traditional approach of radiative transitions (decay of a
resonance into a resonance of lower energy plus a real
photon) several types of approximations are of current
use; the effect of these approximations can hide the ne-
cessity of using a more sophisticated vertex for the quark-
photon coupling. Most of those approximations originate
from the formulae widely used in atomic or nuclear physics
which are simply translated to the meson sector. Examples
are the dipole approximation for E1 transitions, the long-
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wavelength approximation (LWLA) and a non-relativistic
phase space factor.

Although these approximations are fully justified in
atomic or nuclear physics, it is not obvious that they con-
tinue to work when applied to mesons. Indeed, in this
sector the transition energy is typically Eγ = kγ = 0.1–
0.5 GeV, while the size of the source is roughly R = 0.5–1
fm = 2.5–5 GeV−1, so that the long-wavelength condition
kγR � 1 is not really justified. Comparing the photon en-
ergy to the mass of the emitting meson also convinces us
that a non-relativistic phase space is probably not appro-
priate. Moreover the fact that the electrons in an atom
or the nucleons in a nucleus have the same mass is not
true in the case of some mesons, and new phenomena can
appear.

During the seventies and eighties, a lot of work has
been performed on radiative transitions for mesons (and
also for baryons but we are less interested in this sec-
tor here). At the very beginning they were studied in
the vector dominance model [6,7]. The quark model was
then introduced either in the framework of the MIT bag
model [8–10], the non-relativistic quark model [11–13], the
2-body Dirac equation [14–16] or some relativistic phe-
nomenological quark models [17,18]. Unfortunately even
in the most complete and nice works, as [17] or [13], there
is always an approximation or an inconsistency which pla-
gues the results or precludes precise conclusions. Up to
now, there does not exist a consensus concerning “rela-
tivistic” models for two-body problems; some of them are
not fully covariant (relativized quark model [17], Salpeter
equations [19], two-body Dirac potentials [20], bag models
[21],...), other are covariant in their formulation (Bethe-
Salpeter [22], light cone dynamics [23],...) or can be con-
sidered as approximations of the Bethe-Salpeter equa-
tion (quasi-potential [24], instantaneous approximation
[25],...). None of them is really free from difficulties, and
the present state of art is such that none can pretend to be
the ultimate relativistic theory. In particular, most of rela-
tivistic models suffer from a bad treatment of the center of
mass and the relativized models do not treat with equal
care the quark-quark potential and the electromagnetic
operator. Before introducing relativistic effects, we believe
that we should first explore in detail the NRQM, but in
the best possible way. In many papers, a non-relativistic
phase space or a long-wavelength approximation are used
and we will see that this is not justified in the meson sec-
tor. In addition, only very few studies consider the totality
of the known experimental data but instead focus on very
specific transitions (light quark sector or heavy quark sec-
tor or even more restricted sets).

The aim of this paper is to present an exhaustive study
of radiative transitions, in the framework of NRQM, avoid-
ing the various approximations widely employed in the lit-
erature and using wave functions consistent with a good
description of the meson spectra. Our philosophy is that
spectra and transitions rely on the same dynamics and
cannot be separated. Thus, we base our analysis on 3 dif-
ferent quark-quark potentials giving a good description of
the resonance energies; the resulting wave functions are

introduced as such in the calculation of transition widths,
so that all our results are parameter free. A comparison
between them is highly instructive. In particular, we have
in mind to see whether it is necessary to modify the quark-
photon vertex; our study is thus a necessary first step be-
fore undertaking a more difficult and ambitious program,
which is beyond the scope (both theoretically and numer-
ically) of the present work.

In this paper, we will consider all the radiative transi-
tions (which are sufficiently reliable) that are reported in
the particle data group booklet because we aim at an ex-
haustive analysis. The experimental data can be gathered
into several groups:

– the transitions allowed by LWLA; they are essentially
M1 transitions (3S1 → 1S0 or 1S0 → 3S1) and E1
transitions (3PJ → 3S1 or 3S1 → 3PJ); there is also the
particular E1 transition corresponding to the decay
b1(1235) → πγ ( 1P1 → 1S0);

– the transitions forbidden by LWLA; they are scarce
but interesting : they correspond to 3PJ → 1S0, 3S1 →
3S1 and 1P1 → 3S1 transitions.

The paper is organized as follows. In the next section,
we show how the meson wave functions are obtained and
also present the different quark-antiquark potentials that
we are studying. In the third section, we recall the formal-
ism necessary for the description of radiative transitions
putting the emphasis on the general treatment and the dif-
ferences corresponding to the various approximations that
we want to discuss. In sect. 4 our final expressions for the
total widths are summarized. Results are presented, with
a brief discussion of various approximations in sect. 5 and
sect. 6 contains the conclusion.

2 Description of mesons

In the NRQM, the meson is considered as a two-particle
system: a (constituent) quark of mass m1 and an antiquark
of mass m2 submitted to a potential V (r), so that the
corresponding Schrödinger equation reads:

[
m1 + m2 +

p2

2µ
+ V (r)

]
| Ψα〉 = mα | Ψα〉 , (1)

where µ is the reduced mass, p the relative momentum,
and mα the total mass of the resonance. This last quantity,
as well as the wave function | Ψα〉, of course depends on
the choice for the potential. The ordinary quarks u and d
can be considered as isospin doublets; they are symbolized
generically as n.

2.1 The potentials

In this paper we will consider three different types of po-
tential, the so-called AL1 and AP1 potentials [26] and the
DNR potential [3]. For the purpose of our analysis, it is not
necessary to introduce very sophisticated forms including
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Fig. 1. Mass spectra for most of the resonances studied in
this article. The open circles represent the experimental values
with their error bars (the short horizontal lines) if they are
significant. The large horizontal lines are the theoretical values
obtained with the DNR potential.

spin-orbit, tensor forces, ...whose effects are not so impor-
tant and which considerably complicate the formalism.

The first potentials, AL1 and AP1, are the simplest
ones and their parameters have been fitted in order to
best reproduce the meson resonances in all sectors. They
both contain a central “constant+Coulombic” term (rem-
nant of one-gluon exchange) and a hyperfine term with a

Gaussian radial dependence. The peculiarity, in contrast
to other usual potentials such as the one due to Bhaduri
and coworkers [27], is that the range of this Gaussian term
is mass dependent, following Ono’s prescription [28]. The
two potentials differ by the confinement term. In AL1, it
behaves linearly with distance, whereas for AP1 it behaves
with power 2/3, more suited for the Regge trajectories
in non-relativistic dynamics. The baryon spectra are also
well reproduced with those potentials. The parameters can
be found in [26] and the spectra can be provided on re-
quest. Most of the resonances are correctly described but a
drawback of those potentials, common to many others, is
that the | Ψηn

〉 =| nn̄, I = 0, L = 0, S = 0〉 state is degen-
erate with the π and the | Ψηs

〉 =| ss̄, I = 0, L = 0, S = 0〉
state is unphysical. This means that the η and η′ reso-
nances do not come out correctly. Nevertheless, one can
simulate their wave functions by the traditional prescrip-
tion

| Ψη〉 =
1√
2
[| Ψηn

〉− | Ψηs
〉] , | Ψη′〉 =

1√
2
[| Ψηn

〉+ | Ψηs
〉] .
(2)

The DNR potential is aimed to remove this difficulty.
This is achieved by introducing instanton effects. The non-
relativistic reduction of instantonic terms is active only for
L = 0, S = 0 [29]. Thus, it participates in the dynamics of
pions and kaon and it introduces a coupling term between
nn̄ and ss̄ sectors so that the η and η′ wave functions are
given by

| Ψη〉 = [| Ψηn
〉− | Ψηs

〉] , | Ψη′〉 = [| Ψη′
n
〉+ | Ψη′

s
〉] . (3)

However, in this case the various functions Ψηn
,... result

from a coupled-channel calculation and cannot be consid-
ered as mixing angles; they are determined dynamically
and |〈Ψηi

|Ψηi
〉|2 represents the probability that the reso-

nance is found in the flavor channel īi (the signs are chosen
in such a way that |Ψηn

〉 and |Ψηs
〉 have the same sign for

r → 0 or r → ∞). Another aspect of the potential is that
the short-range behaviour is fitted to the experimental val-
ues of αs(q2) and that the constituent quarks are no longer
point-like but acquire a Gaussian extension. The effective
potential used in the Schrödinger equation results from the
convolution of the bare potential with this Gaussian den-
sity. Essentially, the Coulombic term is replaced by error
functions, the linear confinement remains linear and the
short-range instanton and hyperfine terms are represented
by Gaussian expressions. The parameters can be found in
the original paper [3]. To give an idea of the quality of the
spectra concerning the resonances studied in this work,
we present a comparison with experimental data in fig. 1.
This potential is the most sophisticated and it describes
quite nicely the entire spectrum. The Regge trajectories
are also well reproduced if one considers the centroids of
L-S multiplets [3].

2.2 Meson wave functions

Because of the rotational invariance, the meson wave func-
tion is written as

| ΨILSJ〉 = ηI(1, 2)[ΦnL(1, 2)χS(1, 2)]J , (4)
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Fig. 2. π and ρ radial wave functions Rnl(r)√
4π

for N = 1, 2 and

5 Gaussian terms compared to the exact ones (obtained with
AL1 potential). For N = 5, the curve is surimposed to the
exact one.

where ηI(1, 2) is the isospin wave function with total
isospin I, χS(1, 2) is the spin wave function with total
spin S and ΦnL(1, 2), the space wave function with orbital
momentum L and radial number n. Spin S and orbital mo-
mentum L are coupled to total angular momentum J , but
are nevertheless good quantum numbers. Strictly speak-
ing, one should also include a colour wave function but
it is the same for every meson and, since the transition
operator does not depend on colour degrees of freedom,
does not play any role. It is therefore omitted in the fol-
lowing. In the same way, we do not indicate the flavor
content of the meson since the electromagnetic operator
does not affect it; however, one should remember that the
total wave function for the η resonances given by (2) or
(3) is a superposition of two wave functions of type (4).
The magnetic quantum numbers are not indicated here
although the projection of the isospin plays a role since
the operator is a mixing of isoscalar and isovector terms.
We will come back to this point later on.

To deal with the matrix elements of the transition op-
erator, we find it convenient to express the space wave
function in momentum representation. Thus we put

〈p | ΦnL(1, 2)〉 = RnL(p)YL(p̂) . (5)

Moreover, an approximation of the exact wave function
in terms of Gaussian functions will be particularly well
suited for computation of difficult quantities. We will see
the various advantages of such a prescription later. In this
case, we write

RnL(p) = pL
N∑

i=1

ci exp(−Aip
2/2) . (6)

In general the number of Gaussian terms needed in
(6) to achieve convergence is rather small. We plot the
corresponding wave functions for different values of N in
fig. 2 in the case of the AL1 potential. Although there are
some differences between the N = 1 and N = 2 cases,
the approximation (6) can be identified very rapidly with
the exact solution. In practice we perform our calculations
with N = 5 and consider the corresponding wave function
as the exact one. Thus, in the rest of the paper, we identify
the wave function given by (6) with N = 5 with the exact
wave function.

3 Radiative transitions

A number of points are already well known, and we do
not want to spend too much time on them. We will focus
our attention essentially on new aspects or on formulations
that are discussed in detail later on. Everywhere in this
paper we employ natural units � = c = 1.

3.1 Transition operator

We begin with the non-relativistic expression of the elec-
tromagnetic transition operator between an initial meson
state and a final meson state plus a real photon of mo-
mentum k, energy E =| k | and polarisation ε(k, λ). We
adopt, as usual, the Coulomb gauge, and we normalize the
plane waves in a box of volume V (as usual, α stands for
the fine-structure constant).

HI = −
√

2πα

V E
ε(k, λ) · M , (7)

M =
2∑

i=1

ei

2mi
exp(−ik · ri)(2pi − iσi × k) . (8)

The summation runs over the two particles of charge ei

and mass mi present in the meson. The first term in M
is known as the electric term and the second one as the
magnetic term. In this paper, we do not wish to consider
electromagnetic modifications due to relativistic effects or
to meson exchange currents, but rather to explore the con-
sequences of a sophistication at the level of the wave func-
tion, which is more sensitive to strong interactions. With
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the prescription (8), one can note that we would find the
right formulae for the static magnetic moment of a punc-
tual particle with a constituent mass mi.

3.2 Transition amplitude

The initial meson of mass ma is at rest and has angu-
lar momentum JaMa (coupling of La and Sa), isospin
IaMIa

. The final meson of mass mb has a total momen-
tum Kb, angular momentum JbMb (coupling of Lb and
Sb), isospin IbMIb

. Inserting M of (8) between the corre-
sponding wave functions (4)(in the rest frame of the meson
p1 = −p2 = p) in the momentum representation (com-
pleted by the center-of-mass plane wave), one obtains the
transition amplitude

MA→B = δKb,−k[M(1)
A→B + M(2)

A→B] , (9)

M(1)
A→B =

〈e1〉
2m1

∫
d3pΦ∗

B

(
p − m2

m1 + m2
k
)

×[2p − iσ1 × k]ΦA(p) , (10)

M(2)
A→B =

〈e2〉
2m2

∫
d3pΦ∗

B

(
(p +

m1

m1 + m2
k
)

×[−2p − iσ2 × k]ΦA(p) , (11)

where the subscripts refer to the particle number (see fig. 3
for a graphical interpretation of quark momenta in the
meson). If we use the isospin formalism 〈ei〉 is given by
formula (12), otherwise 〈ei〉 simply means the charge cor-
responding to the flavor of quark i:

ti = 0 : 〈ei〉 = ei δIaIb
δMIa MIb

, (12)

t1 = 1/2 : 〈e1〉 = δMIa MIb

×
[
1
6
δIaIb

+ (−1)Ia+t2−1/2
√

3(Ia + 1/2)

×〈IaMIa
10 | IbMIb

〉
{

1 1/2 1/2
t2 Ia Ib

}]
, (13)

t2 = 1/2 : 〈e2〉 = δMIa MIb

×
[
−1

6
δIaIb

+ (−1)Ib+t1−1/2
√

3(Ia + 1/2)

×〈IaMIa
10 | IbMIb

〉
{

1 1/2 1/2
t1 Ia Ib

}]
. (14)

3.2.1 Long-wavelength axpproximation

Due to the recoil term in the meson B wave function,
the momentum-space integral appearing in (10-11) is not
easy to calculate. A widely used approximation is the
long-wavelength approximation (LWLA) which consists in
putting k = 0 in the argument of ΦB (this is equivalent to
replacing exp(−ik · r) by 1 in coordinate representation).
It is just a matter of Racah algebra to disentangle the

Fig. 3. Schematic representation of the elementary decay pro-
cess with momentum values from the rest frame of the inital
meson. (1) Denotes the emission of the real photon by the
quark and gives rise to M (1) and (2) by the antiquark and
gives rise to M (2). The total process amplitude is the sum of
the 2 amplitudes (1) and (2).

spin and space degrees of freedom in (10-11). It is pleas-
ing that, in this case, the electric and magnetic part, which
are of different parity, cannot couple the same states; this
is why we speak about electric and magnetic transitions.
The electric transitions change the parity of the state, but
not the spin, whereas the magnetic transitions change nei-
ther parity nor orbital momentum.

3.2.2 Beyond long-wavelength approximation

The major advantage of using the wave functions ex-
pressed in Gaussian terms (6) is that the treatment of the
general case can be dealt with rather simply. Since tak-
ing N = 5 is equivalent to treating the exact wave func-
tion, the following treatment solves exactly the problem.
In fact, an individual term in the expansion is of the form
ΦL(p) = exp(−Ap2/2)YL(p), where YL(p) = pLYL(p̂) is
the usual solid harmonic. To illustrate the procedure, let
us consider only one term in the expansion (one A quan-
tity for meson A, one B quantity for meson B with a unit
amplitude cA = cB = 1). The argument in the meson B
wave function is now a linear combination of p and k.
Such a combination of type Ylm(ap1 + bp2) can be eas-
ily expressed in terms of individual Yl1(p1) and Yl−l1(p2)
terms. Moreover, a coupling term like [Yl1(p)Yl2(p)]lm is
contracted into a single Ylm(p) by well-known formulae
(see i.e. [30]).

The same combination of p and k appearing in the ex-
ponential is a quadratic form which can be diagonalized
in order to get rid of the non-diagonal terms. Let us just
summarize our conclusions using some auxilliary quanti-
ties (i = 1, 2 refers to particle number):

D =
A + B

2
, x(i) =

m3−iB

(m1 + m2)(A + B)
,

z(i) =
m3−iA

(m1 + m2)(A + B)
, F (i) = Dx(i)z(i) . (15)
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If the masses of the quark and the antiquark are the same
there is no need to distinguish the quantities x, z, F and
further simplifications arise which we do not wish to com-
ment. The transition amplitudes in the general case can
be converted to a more appropriate form:

M(1)
A→B =

〈e1〉
2m1

∫
d3q exp(−Dq2 − F (1)k2)

×[Y∗
Lb

(q − z(1)k)χSb
]Jb

[2q − iσ1 × k]

×[YLa
(q + x(1)k)χSa

]Ja
,

M(2)
A→B =

〈e2〉
2m2

∫
d3q exp(−Dq2 − F (2)k2)

×[Y∗
Lb

(q + z(2)k)χSb
]Jb

[−2q − iσ2 × k]

×[YLa
(q − x(2)k)χSa

]Ja
. (16)

Altough it is possible to pursue the calculations using
(16), experimentally all the known transitions exhibit ei-
ther La = 0 or Lb = 0. The resulting formulae look much
simpler in those cases and we report here only these special
cases since only they will be applied in the next chapter.
One important difference, as compared to the LWLA, is
that both the electric and magnetic terms of the operator
contributes to a given transition. Let us present the result
for Lb = 0:

(MA→BLb=0)µ = δSb,Jb
[Eµ(A;x) + Mµ(A;x)] . (17)

The term Eµ(A;x) comes from the electric part of the
operator and reads

Eµ(A;x) = δSa,Sb

√
4πLa

6
L̂a Γ (5/2)

×〈La,Ma − Mb;Jb,Mb | Ja,Ma〉
×〈1,−µ;La − 1,Ma − Mb + µ | La,Ma − Mb〉
×(−1)µYLa−1,Ma−Mb+µ(k)

×
[ 〈e1〉

m1

(x(1))La−1 exp(−F (1)k2)
D5/2

+(−1)La
〈e2〉
m2

(x(2))La−1 exp(−F (2)k2)
D5/2

]
, (18)

where we have introduced the usual notation
L̂a=

√
2La + 1. Note that this term vanishes if La = 0.

The term Mµ(A;x) comes from the magnetic part of
the operator and reads

Mµ(A;x) = (−1)1+Sa2πΓ (3/2)Ŝa

{
1 1/2 1/2

1/2 Sa Jb

}

×
[ 〈e1〉

m1

x(1) La exp(−F (1)k2)
D3/2

+ (−1)La+Sa+Jb
〈e2〉
m2

× x(2) La exp(−F (2)k2)
D3/2

] ∑
µa,σa,ν,σ

〈LaµaSaσa | JaMa〉

× 〈Saσa1ν | JbMb〉〈1ν1σ | 1µ〉Y1σ(k)YLaµa
(k) . (19)

The case La = 0 looks very similar, but one has to be
very careful with the phases. In this case the electric part

is given by

Eµ(B; z) = (−1)Lb−1−µE∗
−µ(A = B;x = z) , (20)

meaning that in expression (18), one has to replace all
quantities relative to A by the corresponding ones rela-
tive to B, change the sign of µ, change x by z, take the
complex conjugate and multiply by a given phase. The
expression for Mµ(B; z) is obtained with the same pre-
scription as (20).

If one admits more than one Gaussian function in the
expansion of the wave function the quantities defined in
(15) depend on which terms are retained and must be
written more explicitly, i.e., Dij = (Ai +Bj)/2. To obtain
the complete expression corresponding to the exact wave
function, one must take care of this; for example one must
make in (18)-(19) the following replacement:

(x(1))La−1 exp(−F (1)k2)
D5/2

→
N∑

i,j=1

cA
i cB

j

(x(1)
ij )La−1 exp(−F

(1)
ij k2)

D
5/2
ij

(21)

and similar replacements everywhere.
Thus, with the prescription (6) for the wave function,

the transition amplitudes can be calculated exactly, with-
out any numerical integration.

4 The phase space

4.1 Density of states

The density of states is obtained with periodic conditions
on the box. The treatment can be found in any textbook.
The density of states per unit energy and per unit solid
angle is given by

ρ(E,Ω) =
V E2

(2π)3
. (22)

One has to calculate the matrix element | 〈Bγ|Hi|A〉2 |
from (7). The best way is to use spherical components
for the vectors and Racah algebra to deal with the corre-
sponding expressions. One has then to sum over the po-
larisations of the photon and of the final meson and to
average over the polarisations of the decaying meson. In
order to simplify the notation, let us introduce the quan-
tity X(E) by

X(E)δKb,−k =
1

ĴA
2

∑
λ=±1

∑
Ma,Mb

| 〈Bγ|Hi|A〉 |2 . (23)

The decay width is given by the golden rule:

Γ =
∫

dE δ(Ef − Ei)
∫

dΩ 2π ρ(E,Ω)X(E) . (24)
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In the literature, one finds different formulae for the width
depending upon how the delta-distribution reflecting en-
ergy conservation is treated in (24). This is known as the
phase space factor Φ. Explicitly, one writes the width as

Γ = Φ(E0)V X(E0) . (25)

As required, the box volume V , appearing in (25), cancels
with the one present in X(E) as seen from (7). E0 denotes
the photon energy value fulfilling the energy conservation
equation Ef = Ei.

4.2 Relativistic phase space

In this case the energies Ef and Ei are given by their
relativistic expressions. Taking into account the fact that
the momentum of the final meson is opposite to the pho-
ton momentum, the Dirac factor is δ(EB + E − ma) =
δ(

√
m2

b + E2 +E−ma). The integral in (24) is performed
with the usual rules on delta-functions to give

Φ(E0) =
E2

0

π

EB(E0)
ma

, E0 =
m2

a − m2
b

2ma
. (26)

4.3 Non-relativistic phase space

In a non-relativistic treatment, the energies are related to
their momenta by the classical expressions. Alternatively,
one can make the approximation E0 � ma, mb in the
relativistic phase (26), leading to

Φ(E0) =
E2

0

π
, E0 = ma − mb . (27)

Thus, compared to the relativistic expression, the non-
relativistic phase space differs by two effects. The energy
of the photon is equal to the energy difference between the
resonances and the term EB(E0)

ma
is equal to unity.

This kind of phase space is traditional in atomic or in
nuclear physics; it has no real justification when applied
to meson decays. Nevertheless, it is still of common use.
Sometimes in the literature [15] a mixed phase space based
on (26) for E0 and on (27) for Φ(E0) is employed. We shall
comment on those aspects later on.

5 Total widths

5.1 General case

We now come to the expression of the width in the general
case, but with the wave functions expanded in Gaussian
terms, as discussed previously. We present the results only
in the case Lb = 0. The results for La = 0 are easily ob-
tained from these ones with the correct replacement (20)
and the modification due to spin average. We do not want
to enter into too much detail because the calculations are

known in nuclear physics and result directly from Racah
algebra. We report the result below:

ΓA→Bγ = δSb,Jb
2α

EB(E0)
ma

[EE + EM + MM] . (28)

The terms EE , EM,MM come from the electric-
electric, electric-magnetic, magnetic-magnetic part in the
square of the amplitude. One sees that a transition is no
longer either of a purely electric or magnetic type, but a
mixing of both with interference effects. They are given
by

EE = δSa,Sb

Γ (5/2)2

36
La(La + 1)k2La−1

0 A2 ,

EM = δSa,Sb
(−1)La+Sa+Ja+Jb+1 Γ (3/2)Γ (5/2)

2
√

6

×
√

La(La + 1)ŜaL̂aĴb

{
1 1/2 1/2

1/2 Sa Jb

}

×
{

La Sa Ja

Jb La 1

}
k2La+1
0 AB , (29)

MM =
3
4
Γ (3/2)2Ŝa

2
L̂a

2
Ĵb

2
{

1 1/2 1/2
1/2 Sa Jb

}2

×k2La+3
0 B2

∑
J

〈1 1 La 0 | J 1〉2

×
{

La Sa Ja

Jb J 1

}2

, (30)

where the dynamical factors A and B result from the me-
son wave functions

A =
∑
i,j

cA
i cB

j

D
5/2
ij

[ 〈e1〉
m1

(x(1)
ij )La−1 exp(−F

(1)
ij k2

0)

+(−1)La
〈e2〉
m2

(x(2)
ij )La−1 exp(−F

(2)
ij k2

0)
]

, (31)

B =
∑
i,j

cA
i cB

j

D
3/2
ij

[ 〈e1〉
m1

(x(1)
ij )La exp(−F

(1)
ij k2

0)

+(−1)La+Sa+Jb
〈e2〉
m2

(x(2)
ij )La exp(−F

(2)
ij k2

0)
]
. (32)

Let us remark that if La = 0 (transition from S state to
S state), the terms EE and EM vanish, and the transition
is purely magnetic. Now, we have in hand all the tools to
perform exact calculations. The formulae may appear to
be complicated but they simplify a lot for transitions of
experimental interest.

6 The results

We want to stress again that, due to the fact that the wave
functions have been determined with given potentials and
that the transition operator is perfectly well defined, all
the results presented in this section (except the very last
subsection concerning mixing angles) are free from any
adjustable parameter. They thus provide a very good tool
for exploring in detail the drawbacks of the formalism.
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Table 1. Comparison, with the use of AL1 potential, among the various approximations for the electric transitions (first
column): long-wavelength approximation LWLA with non-relativistic phase space (second column) and relativistic phase space
(fourth column), and dipole approximation DA with relativistic phase space (third column).

3S1 → 3PJ

Transition φnrel, LWLA φrel, DA φrel, LWLA Exact Exp. (keV)

ψ(2S) → χc0(1P )γ 19.77 49.92 17.70 14.12 25.76 ± 3.81
ψ(2S) → χc1(1P )γ 38.40 43.43 35.75 34.25 24.10 ± 3.49
ψ(2S) → χc2(1P )γ 47.35 30.23 44.90 46.39 21.61 ± 3.28
Υ (2S) → χb0(1P )γ 0.44 1.52 0.43 0.41 1.89 ± 0.53
Υ (2S) → χb1(1P )γ 1.06 2.34 1.04 1.02 2.95 ± 0.61
Υ (2S) → χb2(1P )γ 1.49 2.39 1.47 1.49 2.90 ± 0.61
Υ (3S) → χb0(2P )γ 0.70 1.65 0.68 0.66 1.42 ± 0.25
Υ (3S) → χb1(2P )γ 1.69 2.67 1.67 1.65 2.97 ± 0.43
Υ (3S) → χb2(2P )γ 2.45 2.91 2.42 2.44 3.00 ± 0.45

3PJ → 3S1

Transition φnrel, LWLA φrel, DA φrel, LWLA Exact Exp. (keV)

f1(1285) → ρ0γ 1727.12 824.56 939.73 1232.83 1296.00 ± 295.20
χc0(1P ) → J/ψ(1S)γ 268.67 144.59 233.40 255.40 92.40 ± 41.52
χc1(1P ) → J/ψ(1S)γ 349.33 298.24 292.29 306.63 240.24 ± 40.73
χc2(1P ) → J/ψ(1S)γ 387.90 396.53 319.01 262.05 270.00 ± 32.78
χb0(1P ) → Υ (1S)γ 30.63 20.36 28.82 30.10 seen
χb1(1P ) → Υ (1S)γ 33.14 25.59 31.03 31.51 seen
χb2(1P ) → Υ (1S)γ 34.67 29.14 32.37 30.39 seen
χb0(2P ) → Υ (1S)γ 13.58 11.32 12.12 14.01 seen
χb0(2P ) → Υ (2S)γ 13.47 9.37 13.07 13.31 seen
χb1(2P ) → Υ (1S)γ 13.99 12.30 12.45 13.53 seen
χb1(2P ) → Υ (2S)γ 14.97 12.77 14.47 14.51 seen
χb2(2P ) → Υ (1S)γ 14.22 12.89 12.63 11.80 seen
χb2(2P ) → Υ (2S)γ 15.82 15.04 15.27 14.63 seen

6.1 Influence of various approximations

In this section, we wish to indicate the effects of a number
of approximations that can be found in earlier works.

As seen from fig. 2, there exists a sizeable difference if
one uses a Gaussian-type wave function (N = 1 in the ex-
pansion (6) or the exact one N = 5). This effect of course
appears in the results concerning the widths. Passing from
N = 1 to N = 2 leads to a difference around 10%, from
N = 2 to N = 3 one sees a further small difference around
1%, while for N > 3 the results are perfectly stable. This
means that 3 Gaussian terms are sufficient to describe the
wave function in a correct way. Nevertheless, for the rest
of our study, every calculation is performed with N = 5
and the result is considered as the exact one concerning
the wave function. This is particularly important in the
case of radial excitations (with one or several nodes in the
radial part), since obviously N = 1 cannot explain such
a state and even N = 2 could be a crude approximation.
Moreover, since our results are analytical, computation
with N = 5 is practically as fast as the N = 3 case.

In table 1 we present the results concerning various
approximations, with use of AL1 potential, for electric
transitions (only electric transitions are concerned with
dipole approximation). Let us discuss first the effect of
phase space. Indeed, the use of experimental masses is

fundamental to a good photon energy which is of primary
importance in the formulae. A relativistic phase space al-
ways gives the right order of magnitude, whereas a non-
relativistic one can be dramatically off. In table 1 this ef-
fect is moderate because it mainly deals with very heavy
mesons but in the case of magnetic transitions, more com-
mon in the light meson sector, the effect can reach a fac-
tor 10 for some transitions (in ρ → πγ the non-relativistic
phase space gives 547 keV, while the relativistic one gives
57 keV or ω → πγ for which the corresponding values
are, respectively, 5239 keV and 543 keV). In this case,
the fault is partly due to an overestimation of the factor
EB/ma which non-relativistically is taken to be unity (the
value for ρ → πγ is 0.52). But the main problem comes
essentially from an incorrect determination of the momen-
tum k0 = E0, that enters both in the EB

mA
factor and in

the amplitudes. There exist some important discrepancies
between the relativistic and the non-relativistic momenta,
and this leads to very important effect on the width. A
mixed phase space gives results in between. Among all
the approximations that are commonly employed in nu-
clear physics, the use of a non-relativistic phase space is
certainly the worse when applied to radiative transitions
of mesons. The phase space is essentially a kinematical
ingredient and, even if one uses a non-relativistic approxi-
mation for the wave function or for the quark-photon ver-
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Table 2. General case, relativistic phase space, AL1, AP1, and DNR potentials. For those transitions, the electric and inter-
ference terms are null.

3S1 → 1S0

Transition Tot(AL1) Tot(AP1) Tot(DNR) Exp. (keV)

ρ+ → π+γ 48.48 60.41 44.64 67.82 ± 7.55
ρ0 → π0γ 48.66 60.64 44.81 102.48 ± 25.69
ρ0 → ηγ 47.73 60.63 51.53 36.18 ± 13.57
ω → π0γ 459.30 571.79 423.19 714.85 ± 42.74
ω → ηγ 6.08 7.72 6.56 5.47 ± 0.84
φ(1020) → ηγ 41.27 44.12 31.95 55.82 ± 2.73
φ(1020) → η′(958)γ 0.30 0.32 0.27 0.53 ± 0.31
K∗(892)0 → K0γ 98.28 116.41 85.93 116.15 ± 10.19
K∗(892)+ → K+γ 79.07 104.46 66.99 50.29 ± 4.66
D∗(2007)0 → D0γ 33.60 41.74 28.22 < 800.10 ± 60.90
D∗(2010)+ → D+γ 2.48 3.58 1.84 < 1.44 +2.75

−0.92

D∗+
s → D+

s γ 0.26 0.31 0.18 < 1789.80 ± 47.50
B∗+ → B+γ 0.97 1.26 0.78 seen
B∗0 → B0γ 0.28 0.36 0.23 seen
J/Ψ → ηcγ 1.85 1.87 1.75 1.13 ± 0.35
ψ(2S) → ηc(1S)γ 4.97 6.34 7.13 0.78 ± 0.19

1S0 → 3S1

Transition Tot(AL1) Tot(AP1) Tot(DNR) Exp. (keV)

η′(958) → ρ0γ 112.90 143.62 107.50 61.31 ± 5.51
η′(958) → ωγ 10.50 13.36 10.01 6.11 ± 0.78

tex, it is absolutely necessary to take a relativistic phase
space and an exact determination of the photon energy.

The dipole approximation (DA) is also widely used in
atomic and nuclear physics for E1 transitions. It must
be considered more as a convenient approximation (the
matrix elements are simpler to calculate) than an approx-
imation based on physical arguments. Nevertheless the ef-
fect is also important, although weaker than the phase
space one, since it can attain a factor 3 in certain cases
(see table 1). Sometimes it increases the results while in
other cases it decreases them, so that it is not possible
to draw reliable conclusions. We consider that DA should
be avoided in the meson sector, although its effect is not
really dramatic.

Lastly, the long-wavelength approximation (LWLA)
is probably the approximation that is most commonly
used. In this scheme, a number of transitions are com-
pletely forbidden, while they have been observed experi-
mentally, some of them with an appreciable width. The
approximation obviously fails in this case. For 3PJ → 3S1

or 3S1 → 3PJ transitions, a correct treatment predicts
electric-magnetic mixing, while LWLA does not allow this
mixing. In such a situation LWLA can differ by more than
25% from the exact results (see table 1 and for example
the case of f1 → ρ0γ transition).

For La = Lb = 0 only the magnetic term remains,
while a pure electric term remains for 1P1 → 1S0. In
this case the LWLA gives always a larger value; this can
be shown analytically if the wave function has only one
Gaussian component. Since in general one component is
dominant it is not surprising that this property persists

even in more realistic situations. Although this is not al-
ways the case, LWLA often gives better (as compared to
experiment) results; this means that either the wave func-
tions are not so good or that something is still missing in
the theory.

6.2 General study for three different quark-antiquark
potentials

In this part we present the most sophisticated calcula-
tions in this framework. We go beyond LWLA, use rela-
tivistic phase space and exact wave functions. The aim is
to test the three quark-antiquark potentials proposed in
subsect. 2.1, to see whether the results are very sensitive
to the dynamics of quarks inside a meson. The results are
presented in tables 2-4.

The transitions 1P1 → 3S1 and 3PJ → 1S0 are purely
magnetic but are completely forbidden in LWLA. Our
complete treatment predicts them with the right order
of magnitude.

An overall look at those tables shows us the similarity
of the decay widths resulting from the AL1, AP1 and DNR
potentials. The results obtained with AL1 generally lie
between those of DNR and AP1. The predicted values
coming from the AL1 potential are smaller than the AP1
ones. This could be related to the different asymptotic
behavior of the potential at long range. The confinement
being less steep in the AP1 potential, the spread of the
wave function is more important and contributes more to
the spatial integration. Globally, no potential is obviously
more suited than the others for those calculations. DNR
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Table 3. Same as table 2 except that the electric, magnetic and interference terms contribute to the width. The columns
number 2, 3 and 4 refer to the DNR potential.

3S1 → 3PJ

Transition Elec. Interfer. Magn. Tot(AL1) Tot(AP1) Tot(DNR) Exp. (keV)

ψ(2S) → χc0(1P )γ 22.48 −4.15 0.19 14.12 14.06 18.52 25.76 ± 3.81
ψ(2S) → χc1(1P )γ 45.14 −1.83 0.04 34.25 34.23 43.34 24.10 ± 3.49
ψ(2S) → χc2(1P )γ 56.58 1.28 0.02 46.39 46.43 57.88 21.61 ± 3.28
Υ (2S) → χb0(1P )γ 0.86 −0.03 0.00 0.41 0.54 0.82 1.89 ± 0.53
Υ (2S) → χb1(1P )γ 2.06 −0.02 0.00 1.02 1.35 2.04 2.95 ± 0.61
Υ (2S) → χb2(1P )γ 2.92 0.02 0.00 1.49 1.97 2.94 2.90 ± 0.61
Υ (3S) → χb0(2P )γ 1.12 −0.03 0.00 0.66 0.73 1.09 1.42 ± 0.25
Υ (3S) → χb1(2P )γ 2.73 −0.02 0.00 1.65 1.84 2.71 2.97 ± 0.43
Υ (3S) → χb2(2P )γ 3.96 0.03 0.00 2.44 2.71 3.98 3.00 ± 0.45

3PJ → 3S1

Transition Elec. Interfer. Magn. Tot(AL1) Tot(AP1) Tot(DNR) Exp. (keV)

f1(1285) → ρ0γ 718.41 354.45 87.44 1232.83 1376.96 1160.31 1296.00 ± 295.20
χc0(1P ) → J/ψ(1S)γ 237.70 29.16 0.89 255.40 260.24 267.75 92.40 ± 41.52
χc1(1P ) → J/ψ(1S)γ 291.39 29.39 1.48 306.63 312.43 322.27 240.24 ± 40.73
χc2(1P ) → J/ψ(1S)γ 314.28 −38.59 3.32 262.05 266.99 279.01 270.00 ± 32.78
χb0(1P ) → Υ (1S)γ 28.02 2.01 0.04 30.10 30.85 30.06 seen
χb1(1P ) → Υ (1S)γ 30.07 1.26 0.03 31.51 32.26 31.35 seen
χb2(1P ) → Υ (1S)γ 31.30 −1.43 0.05 30.39 31.03 29.91 seen
χb0(2P ) → Υ (1S)γ 7.01 1.02 0.04 14.01 11.80 8.07 seen
χb0(2P ) → Υ (2S)γ 14.01 0.49 0.00 13.31 13.52 14.50 seen
χb1(2P ) → Υ (1S)γ 7.21 0.56 0.02 13.53 11.38 7.80 seen
χb1(2P ) → Υ (2S)γ 15.45 0.33 0.00 14.51 14.72 15.79 seen
χb2(2P ) → Υ (1S)γ 7.33 −0.59 0.03 11.80 9.90 6.78 seen
χb2(2P ) → Υ (2S)γ 16.28 −0.39 0.01 14.63 14.82 15.89 seen

Table 4. Same as table 2. The transition 1P1 → 1S0 is electric whereas the two other types are purely magnetic.

1P1 → 1S0

Transition Tot(AL1) Tot(AP1) Tot(DNR) Exp. (keV)

b1(1235)+ → π+γ 148.68 152.76 118.27 227.20 ± 58.60
3PJ → 1S0

Transition Tot(AL1) Tot(AP1) Tot(DNR) Exp. (keV)

a1(1260)+ → π+γ 179.53 229.90 171.45 seen
a1(1260)0 → π0γ – – – seen
a2(1320)+ → π+γ 142.01 179.27 136.64 299.60 ± 65.71

1P1 → 3S1

Transition Tot(AL1) Tot(AP1) Tot(DNR) Exp. (keV)

Ds1(2536)∗+ → D∗+
s γ 10.97 11.99 8.63 probably seen

gives better results in heavy mesons in general, while AP1
seems better for La = Lb = 0 transitions and AL1 for
dominant electric transitions.

The trends are essentially the same and when one po-
tential gives too low (or too high) a value, so do the oth-
ers. The agreement with experiment is satisfactory for all
types of transitions, giving indication that we are on the
right track for the description of mesons. The discrepancy
with experiment very rarely exceeds 50% and this can
be considered as encouraging owing to the fact that we
have no free parameters. However, the results are not com-
pletely satisfactory. It is very difficult to compare our work

with previous ones, because very few authors attempted to
use a unified treatment for the totality of the transitions.
A notable exception is the extensive study of Godfrey and
Isgur [17]; we obtain results of the same quality. Very of-
ten, Godfrey and Isgur obtained too high values, whereas
our wave functions tend to underestimate the data. How-
ever, we have no free parameters, while they have two free
parameters for fitting the transitions and they used an ad
hoc phase space factor, which seems to us quite artificial.

The fact that three different realistic wave functions,
based on potentials that nicely reproduce the spectra, give
more or less the same trends (although there can exist
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20% differences) shows that the quality of the wave func-
tion is not responsible entirely for the discrepancy with
experiment. This is not often the case (except of course
when it gives a null result). This proves that something
is still missing in the formalism although current calcula-
tions provide the dominant contributions.

Now let us have a closer look to some interesting tran-
sitions. A special one concerns the neutral and charged
decays of the ρ into the πγ. Experimentally the decay
width for the charged channel is 68 keV, whereas the
measured value for the neutral channel is 102 keV. In
our calculation the small difference between these two
channels comes only from the tiny difference between the
experimental masses of the π+ and the π0. The decay
width has the same expression for both transitions due to

the term
[
〈e1〉
m1

− 〈e2〉
m2

]2

in expression (19) appearing for

mesons composed of a single flavor. That is
[

2
3 − 1

3

]2 = 1
9

for the charged channel and
[

1
6 − −1

6

]2 = 1
9 for the neutral

one. So where does this important variation between those
two channels come from? First we have to point out that
given the large uncertainties 67.82±7.55 and 102.48±25.69
the two values are nearly compatible with 76 MeV. This
means that there may be no problem with those chan-
nels except an experimental one! Nevertheless if we rely
on the experimental values, a possible explanation could
come from the ω → π0γ transition, which is identical with
ρ0 → π0γ but with an enhancement of a factor of 9 due
to isospin. The experimental value 715 keV is roughly in
agreement with this point. So even a small isospin mixing
between the ω and the ρ0 could sufficiently increase the
decay width to explain the data. This hypothesis will be
tested in the next section.

We remark the same variation for the K* decaying into
the K-meson and for the B* into the B. However, in this
case the isospin factor explains this variation. It appears as
a factor ( 1

3mn
+ 1

3ms
)2 for the neutral channel and a factor

( 2
3mn

− 1
3ms

)2 for the charged one in the LWLA (it is more
complicated to estimate the ratio of the strange with the
isospin doublet masses in the general formalism). Using
the experimental data and making the approximation that
the matrix elements in those two channels are identical
(except for the isospin dependence), we find the relation:
ms = 1.24mn. In our potentials this ratio ms

mn
is 1.83, 1.78,

1.78 for the AL1, AP1 and DNR, respectively.
Concerning the transition a0

1 → π0γ, the decay width
is zero; this is due to the fact that for the 3PJ → 1S0

composed of a single flavor the width is proportional to[
〈e1〉
m1

+ 〈e2〉
m2

]
= 0.

In the potentials used, there is no isospin dependence for
S = 1 states, so the ρ, ω have the same radial part in the
wave function; the same remark is true for the π and ηn

for AL1 and AP1 (no instanton effect) while DNR in prin-
ciple gives a good description of η and η′ resonances. Nev-
ertheless, even for transitions involving those resonances,
DNR is not systematically superior, showing again that
the quality of the wave functions is not the only crucial
ingredient of the formalism. It is not sure that the decay of

the Ds1(2536)∗+ into D∗
sγ has been observed experimen-

taly but our result for this width suggests that it should
be seen experimentally.

6.3 Mixing angles

If the wave function is composed of two parts as in the
η-mesons (flavor mixing), or in the ρ (isospin mixing
with the ω), further extensions are needed in the formal-
ism. In the case of η, the wave function can be written:
|Ψη〉 = |Ψηn

(nn̄; I = 0)〉 − |Ψηs
〉. In our study when no in-

stanton effect is present (AL1 and AP1), we introduce (by
hand) a mixing of 50% between the two flavors. That is we
calculate separately the states η̃n a nd η̃s both normalised
to unity and we have |Ψηn

(nn̄; I = 0)〉 = η̃n√
2
, |Ψηs

〉 = η̃s√
2
.

A possible difficulty is that those states do not have the
same mass in order to calculate the phase space; never-
theless as we take the experimental value this difficulty is
avoided. In the case of DNR there is no ambiguity and the
percentage of each channels is given dynamically (around
55% for the ordinary sector and 45 % for the strange sec-
tor in the case of η-resonance).
From a general point of view we write |Ψ〉 = |Ψ1〉 ± |Ψ2〉,
where 1 and 2 denote the two flavor (or isospin) compo-
nents of the wave function. We have to calculate

M(A → Bγ) =
〈A|M|B〉 = (〈A1| ± 〈A2|)M(|B1〉 ± |B2〉) , (33)

so there could exist 4 components, and therefore some
interferences. In the case of flavor mixing not all the terms
will contribute due to flavor conservation.

As we will see in subsects. 6.3.1 and 6.3.2, the φ could
decay into the ω, the ρ and the π. This could be incorpo-
rated to our decay process by two ways: an isospin mixing
(ω and ρ) or a flavor mixing (φ and ω). The study of
this problem was carried out with the general formalism
and a relativistic phase space. Because of the similarity
of the results obtained via the three potentials, and just
as a matter for comparison, it is sufficient to perform the
calculation only with AL1 and DNR potentials.

Concerning the η and η′ resonances, the wave func-
tions resulting from the AL1 and AP1 potentials need a
flavour mixing angle inserted by hand, such as in (2), while
the DNR potential provides this mixing in a natural and
dynamical way.

Some other comments are in order. The QED conserves
the flavor of the particles at the vertex (the radiative tran-
sitions with flavor change b → sγ have been intensively
studied recently [18,16] but they need penguin diagrams
that we do not consider here); this implies that the quark
content of meson B is the same as the one in the initial
meson A (in our elementary decay process exhibited in
fig. 3). Nevertheless the experimental data show a non-
zero decay width for the following transitions concerning
vector mesons: φ → ωγ and φ → ργ. For a φ-meson taken
to be a pure ss̄, as usually prescribed, this seems to indi-
cate that flavor conservation is violated. Instanton effects
cannot be invoqued because they do not play any role for a
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Table 5. Decay widths obtained with a mixing angle of θf = 4.48◦ between the φ and ω mesons for the AL1 potential and
θf = 4.64◦ for the DNR one. Beyond the long-wavelength approximation, relativistic phase space. The mixing angle is obtained
from the φ → π0γ.

3S1 → 1S0

Transition k0
EB
mA

AL1 DNR Exp. (keV)

ω → π0γ 380 0.51 456.49 420.42 714.85 ± 42.74
ω → ηγ 200 0.74 7.22 7.62 5.47 ± 0.84
φ(1020) → π0γ 501 0.51 fitted fitted 5.617 ± 0.447
φ(1020) → ηγ 363 0.64 35.88 26.92 55.82 ± 2.73
φ(1020) → η′(958)γ 60 0.94 0.34 0.31 0.53 ± 0.31

1S0 → 3S1

Transition k0
EB
mA

AL1 DNR Exp. (keV)

η′(958) → ωγ 159 0.83 8.58 8.16 6.11 ± 0.78
3PJ → 3S1

Transition k0
EB
mA

AL1 DNR Exp. (keV)

f1(1285) → φγ 236 0.82 0.48 0.50 17.76 ± 6.30
3S1 → 3PJ

φ → f0(980)γ 39 0.96 0.03 0.03 1.52 ± 0.18
φ → a0(980)γ 34 0.97 0.23 0.24 < 22.29

spin triplet. Those reactions result from more complicated
processes. One can imagine for instance an annihilation of
the qq̄ pair in meson A into one or several virtual gluons
and creation of a new qq̄ pair in meson B (of possibly dif-
ferent flavor) that interact and emit a real photon. This is
possible only for neutral flavor mesons. Indeed such tran-
sitions (with change of flavor) do not occur in kaons for
example.

A possible way to take into account phenomenologi-
cally these kinds of transitions, in our elementary process,
is to include in the wave functions of the ω a strange fla-
vor componant, or/and in the φ wave function an n flavor
part. A difficulty immediately appears in the case of the ρ
resonance since it is isovector, while a strange flavor can
only create an isoscalar. For the ω and φ one could in-
troduce a mixing flavor angle θf . The physical mesons are
now a combination of the ideal φ0 = ss̄ and ω0 = (nn̄)I=0:

(
ω
φ

)
=

(
cos θf sin θf

− sin θf cos θf

) (
ω0

φ0

)
.

With this modification, the transition φ → ωγ can be
understood as the result of two contributions: φ(ss̄) →
ω(ss̄)γ and φ(nn̄) → ω(nn̄)γ. For the φ → ργ only the n
flavor part of the φ contributes.

From the electromagnetic point of view, only the
charge is conserved, that is the projection of the isospin
but not the isospin value. We can imagine an isospin mix-
ing angle θI between neutral ρ and ω. As a consequence
ρ couples to φ in second order. Another evidence for this
possible mixing angle is the discrepancy between the neu-
tral and charged channel of the ρ → πγ. This isospin mix-
ing could be understood by the near degeneracy of ρ and

ω masses [31]:
(

ρ
ω

)
=

(
cos θI sin θI

− sin θI cos θI

) (
ρ0(I = 1)
ω0(I = 0)

)
.

Our mixing angles are chosen in order to recover the
usual prescription for θ = 0; this does not correspond
always to the procedure used elsewhere.

6.3.1 Flavor mixing

In this subsection, we investigate the mixing between the
φ and the ω. Technically we use the prescription of sub-
sect. 6.3. We need to find an appropriate value for the
mixing angle θf and, for that, we rely on experimental
data. A good candidate is the transition φ → π0γ which
exists only through a flavor mixing. Only the nn̄ flavor
part of the φ contributes to the decay. We find a small
mixing of θf = 4.5 degrees for AL1 and θf = 4.6 for
DNR. We could have chosen ω → ηγ to determine the an-
gle value but the transition including an η-meson are not
very appropriate because of its flavor mixing which could
generate some interference terms. The ω → π0γ transi-
tion is also not well suited for this purpose, even if only
one term (ωnn̄) contributes because the value of a pure
nn̄ meson is smaller (459.30 keV) than the experimen-
tal value (714.85 keV) so that including a ss̄ part in the
ω which will not contribute to the decay could only de-
crease the width. The transitions modified in consequence
are presented in table 5. Some transitions, seen experi-
mentally, are forbidden without the mixing angle. They
acquire a width but the effect is far from being sufficient.
Concerning non-vanishing transitions, the effect is still too
weak and very often in the wrong direction, showing that
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Table 6. Decay widths obtained with a mixing angle of θ = 8.88◦ between the ρ and ω mesons for the AL1 potential and
θ = 10.13◦ for the DNR one. Beyond the long-wavelength approximation, relativistic phase space. the determination of the
mixing angle is based on the transition ρ0 → π0γ.

3S1 → 1S0

Transition k0
EB
mA

AL1 DNR Exp. (keV)

ρ0 → π0γ 373 0.52 fitted fitted 102.48 ± 25.69
ρ0 → ηγ 190 0.75 51.57 56.06 36.18 ± 13.57
ω → π0γ 380 0.51 402.85 362.69 714.85 ± 42.74
ω → ηγ 200 0.74 1.68 1.37 5.47 ± 0.84

1S0 → 3S1

Transition k0
EB
mA

AL1 DNR Exp. (keV)

η′(958) → ρ0γ 170 0.82 121.99 116.95 61.31 ± 5.51
η′(958) → ωγ 159 0.83 2.89 2.09 6.11 ± 0.78

3PJ → 3S1

Transition k0
EB
mA

AL1 DNR Exp. (keV)

f1(1285) → ρ0γ 410 0.68 1332.09 1262.35 1296.00 ± 295.20

a mixing angle is not able alone to explain completely the
discrepancies.

6.3.2 Isospin mixing

Here we consider an isospin mixing between the ω and
the ρ0. This mixing does not appear for the charged ρ±
because it is an MI = ±1 meson. The angle θI = 8.9◦ for
AL1 and θI = 10.1◦ for DNR are taken to fit the transition
ρ0 → π0γ, and discriminates between charged and neutral
transitions. The results are presented in table 6.

Considering the poor quality of the results (4 transi-
tions are deteriorated and 2 improved but still not repro-
ducing the experimental values), it is clear that we are
missing something. This could very well be a wrong an-
gle value. Perhaps the ρ0 → π0γ transition results from
another process and should not be used to determine θI .

7 Summary

This work is an exhaustive review of the decay of a meson
into another one plus a real photon in a non-relativistic
quark model. We have analyzed carefully the different
parts of this elementary process. We discussed briefly var-
ious approximations that are widely used in literature
i.e., long-wavelength approximation, dipole approxima-
tion, different types of phase space factors. We showed
that a relativistic phase space is the only important ingre-
dient to obtain the correct order of magnitude for transi-
tion widths. The dipole approximation has no severe effect
but could be easily avoided with the present-day computa-
tional facilities. The present treatment uses none of these
approximations and allows the calculation of electric-ma-
gnetic interference terms and transitions forbidden in the
LWLA and DA such as 1S0 →3 PJ . We checked the im-
portance of the wave function through the use of three

potentials: AL1, AP1 and DNR. The last one takes care
of instanton-induced effects and a finite size for the quark
and should be considered as the “most realistic”; in par-
ticular it reproduces quite nicely the η and η′ resonances.
Nevertheless, the calculations do not reveal the superiority
of any one of them, the predicted values being of the sim-
ilar quality for all three potentials. DNR wave functions
are better in the heavy-quark sectors, while AL1 and AP1
are to be preferred in the light-quark sectors. To obtain
analytical results, we expanded our wave functions as a
sum of N Gaussian terms. We found that N = 3 is suffi-
cient to obtain a convergence of the results but in order
to be sure to treat the exact wave function, we used ev-
erywhere in our calculation N = 5. We also showed that
using exact wave functions is always preferable to the sin-
gle Gaussian approximation that is in common use. The
discrepancies can be as large as a 20%.

Finally we incorporated mixing angles in order to cal-
culate some otherwise badly reproduced or even forbid-
den transitions such as φ → π0γ. Those angles are of two
kinds: isospin mixing between the ρ and ω mesons and fla-
vor mixing between the φ and ω mesons. The results are
not satisfactory. Except for a possible explanation of the
important difference between neutral and charged decay
of the ρ into π, the isospin mixing deteriorates the qual-
ity of the predicted values and the introduction of flavor
mixing does not lead to important improvements.

Although a completely rigourous formalism gives an
overall satisfactory agreement with experimental data, es-
pecially owing to the fact that we have no free parameters
at our disposal, we gave arguments that, in the frame-
work that we considered (NRQM and NR expression for
the transition operator) some physics is still absent. We
think that one can explore two different directions: inclu-
sion of relativistic effects both in the wave functions and
in the transition operator, and introduction of form fac-
tors at the quark-photon vertex. Work along these lines is
in progress.
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